首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3546篇
  免费   251篇
  国内免费   299篇
化学   63篇
晶体学   4篇
力学   359篇
综合类   78篇
数学   3205篇
物理学   387篇
  2024年   4篇
  2023年   32篇
  2022年   27篇
  2021年   46篇
  2020年   52篇
  2019年   81篇
  2018年   66篇
  2017年   84篇
  2016年   87篇
  2015年   77篇
  2014年   153篇
  2013年   234篇
  2012年   135篇
  2011年   168篇
  2010年   156篇
  2009年   189篇
  2008年   197篇
  2007年   219篇
  2006年   207篇
  2005年   216篇
  2004年   160篇
  2003年   158篇
  2002年   185篇
  2001年   131篇
  2000年   136篇
  1999年   132篇
  1998年   104篇
  1997年   99篇
  1996年   82篇
  1995年   76篇
  1994年   62篇
  1993年   55篇
  1992年   46篇
  1991年   30篇
  1990年   41篇
  1989年   25篇
  1988年   15篇
  1987年   13篇
  1986年   26篇
  1985年   12篇
  1984年   20篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1973年   3篇
排序方式: 共有4096条查询结果,搜索用时 78 毫秒
81.
A new and straightforward proof of the unisolvability of the problem of multivariate polynomial interpolation based on Coatmèlec configurations of nodes, a class of properly posed set of nodes defined by hyperplanes, is presented. The proof generalizes a previous one for the bivariate case and is based on a recursive reduction of the problem to simpler ones following the so-called Radon-Bézout process.  相似文献   
82.
This paper presents an efficient adaptive analysis procedure being able to operate in the framework of the node-based smoothed point interpolation method (NS-PIM). The NS-PIM uses three-node triangular cells and is very easy to be implemented, which make it an ideal candidate for adaptive analysis. In the present adaptive procedure, a new error indicator is devised for NS-PIM settings; two ways are proposed to calculate the local critical value; a simple h-type local refinement scheme is adopted and Delaunay technology is used for regenerating optimal new mesh. A number of typical numerical examples involving stress concentration and solution singularities have been tested. The results demonstrate that the present procedure achieves much higher convergence rate results compared to the uniform refinement, and can obtain upper bound solution in strain energy.  相似文献   
83.
This paper presents some quadrature methods for a class of highly oscillatory integrals whose integrands may have singularities at the two endpoints of the interval. One is a Filon-type method based on the asymptotic expansion. The other is a Clenshaw-Curtis-Filon-type method which is based on a special Hermite interpolation polynomial and can be evaluated efficiently in O(N log N) operations, where N + 1 is the number of Clenshaw-Curtis points in the interval of integration. In addition, we derive the corresponding error bound in inverse powers of the frequency ω for the Clenshaw-Curtis-Filon-type method for the class of highly oscillatory integrals. The efficiency and the validity of these methods are testified by both the numerical experiments and the theoretical results.  相似文献   
84.
The wide class of 3-D autonomous systems of quadratic differential equations, in each of which either there is a couple of coexisting limit cycles or there is a couple of coexisting chaotic attractors, is found. In the second case the couple consists of either Lorentz-type attractor and another attractor of a new type or two Lorentz-type attractors. It is shown that the chaotic behavior of any system of the indicated class can be described by the Ricker discrete population model: zi+1 = zi exp(r − zi), r > 0, zi > 0, i = 0, 1, … . The values of parameters, at which in the 3-D system appears either the couple of limit cycles or the couple of chaotic attractors, or only one limit cycle, or only one sphere-shaped chaotic attractor, are indicated. Examples are given.  相似文献   
85.
We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ Cd+2[ab].  相似文献   
86.
A boundary element method (BEM) for the analysis of two- and three-dimensional uncoupled transient thermo-elastic problems involving time- and space-dependent heat sources is presented. The domain integrals are efficiently treated using the Cartesian transformation and the radial integration methods without considering any internal cells. Similar to the dual reciprocity method (DRM), some internal points without any connectivity are considered; however, in contrast to the DRM, any arbitrary mesh-free interpolation method can be used in the present formulation. There is no need to find any particular solutions and the shape functions in the mesh-free interpolation method can be arbitrary and sufficiently complicated. Unlike the DRM, the generated system of equations contains the unknowns only on the boundary. After finding the primary unknowns on the boundary, the temperature, displacement, and stress components at all internal points can directly be found without solving any system of equations. Three examples with different forms of heat sources are presented to demonstrate the efficiency and accuracy of the proposed method. Although the proposed BEM is mathematically more complicated than domain methods, such as the finite element method (FEM), it is more efficient from a modelling viewpoint since only the surface mesh has to be generated in the presented method.  相似文献   
87.
At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational interpolation function with lower degree and better approximation effect, the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1 (0 〈 dl ≤ m) and d2 (0 ≤ d2≤ n), builds bivariate polynomial vector interpolation for each piece, then combines with them properly. As compared with previous methods, the new method given by this paper is easy to compute and the degree for the interpolants is lower.  相似文献   
88.
In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.  相似文献   
89.
基于刚(粘)塑性流动理论的自然单元法研究   总被引:1,自引:0,他引:1  
将自然单元法与刚(粘)塑性流动理论相结合,对自然单元法在金属塑性成形过程数值模拟中的应用进行了研究。采用基于Voronoi图和Delaunay三角化结构的Non-Sibsonian插值方法构造近似速度场向量,实现无网格方法中速度边界条件的直接精确施加,提出了基于刚(粘)塑性流动理论的无网格自然单元法。运用不完全广义变分...  相似文献   
90.
The Lagrange interpolation of molecular orbital (LIMO) method, which reduces the number of self‐consistent field iterations in ab initio molecular dynamics simulations with the Hartree–Fock method and the Kohn–Sham density functional theories, is extended to the theory of multiconfigurational wave functions. We examine two types of treatments for the active orbitals that are partially occupied. The first treatment, as denoted by LIMO(C), is a simple application of the conventional LIMO method to the union of the inactive core and the active orbitals. The second, as denoted by LIMO(S), separately treats the inactive core and the active orbitals. Numerical tests to compare the two treatments clarify that LIMO(S) is superior to LIMO(C). Further applications of LIMO(S) to various systems demonstrate its effectiveness and robustness. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号